Splunk to Sentinel Migration – Part VI – Users and Permissions

So the last few blogs posts have been really exciting and enlightening with a clear path for migration, unfortunately, we hit the part where things get a bit bleak in the migration path.

Users and permissions are very rich and granular in Splunk. The concept of namespaces are innovative and very useful when you have to carve out sub-administration tasks and data targeting.

There is no concept of namespaces in Azure Sentinel. There is no wide-spread ability to “hide” things with permissions in Sentinel. You can see some of the limited actions/roles that are available in the article Permissions in Azure Sentinel. That being said, there are some things that can be done, but they are really not a matching one to one of the security features in Splunk.

What might we want to carve out permission-wise? Here’s a simple list:

  1. Queries
  2. Lookups
  3. Alerts / Incidents
  4. Dashboards
  5. Tables / Schemas

Let’s take a look at each of these.

Query Permissions

Queries are stored in various ways in Azure Sentinel. Since Log Analytics is the backing for Azure Sentinel, most of them will be saved into Log Analytics. When being stored, they can be simply stored directly via Log Analytics or have various extra properties that define them as special for display in Sentinel. Others could be stored as sub-objects attributes.

Basically there is no concept of pointers to a query like in Splunk. Its a copy by value type of thing. Queries can be copied/used across Analytic rules and Hunting queries. They can also be saved in Log Analytics for re-use but only at the Log Analytics level. Queries saved as functions can be called at higher levels such as Sentinel.

Hunting queries and Analytics Rules can’t be targeted at a user or group level. If you have access to Sentinel, you have access to all the hunting queries. If you have queries that are targeted at a user / namespace in Splunk, they will become global in a single instance of Azure Sentinel. And since Azure Sentinel can’t be pointed at multiple log analytics workspaces, you can’t really define things at a Azure Sentinel level that will then span across all Log Analytics workspaces.

At a Log Analytics level, you can save queries to the workspace. Again, there is no user / group targeting here. If you have access to the Log Analytics workspace, you have access to all saved queries.

Lookup Permissions

As you read about in a previous blog in this series, there are several ways to create lookups. Some of these can content sensitive data so having a way to lock them down is going to be important. Remember, the three types of lookups are:

  1. Log Analytics Table: As you will see later, log analytics tables can be targeted using custom roles.
  2. Watchlists: Global for the Sentinel instance, everyone can see them.
  3. Azure Storage: Using Azure Storage means you would have to have knowledge of the file location and consequently access to the file (via SAS). Problem is, it is easy to look across all queries and be able to find any references to these external files.

The only real option you have for lockdown for lookups is via custom Log Analytics Table imports.

Alerts / Incidents

If you have access to the Azure Sentinel instance, you will see all incidents. There is currently no way to filter or hide incidents in Sentinel based on tagging or any other means. A SOC analyst will be able to see all alerts and incidents.

Dashboards

Since Dashboards are an Azure Resource that show up in the Resource Group, you can set IAM on them such that individuals won’t even be able to see them when they navigate to the Azure Portal. This simply prevents them from seeing a pre-created dashboard. If they were to figure out what a query was that showed data they shouldn’t see and build their own dashboard (provided they have Contribute access to Azure resource group), they could gain access to data they should probably not be looking at.

Tables / Schemas

Tables and data are stored in Log Analytics. As such, if you want to hide tables, you will need to utilize Azure Custom Roles with predefined table sets. You can reference how to this in the article Manage access to log data and workspaces in Azure Monitor. Doing this manually could be a months long process just by itself.

The way to make this work, is to enumerate the namespace in Splunk and then create custom roles for each of the namespaces and the tables they have access too. This will only allow you to limit access to the underlying tables, not any other elements in Azure Sentinel. However, by the nature of its function, it would prevent a person from being able to execute Hunting queries or to view Dashboards that reference those tables since they don’t have access to them.

Users

Users can be exported from the Splunk instance. If they have their email property setup and they exist in the target Azure AD (which could be automated to provision in the case they are not), then they can be added with the basic permissions of Owner, Contributor and Reader in Log Analytics or Sentinel. Anything customized will need to be via custom roles after the user has been created.

If you do go down the custom roles based on tables (which are likely based on namespaces), you will need a mapping file from the Splunk namespace to the role name in Sentinel.

Resolving the Permission problem.

As you can see, there really is no real high-level concept of permissions in Azure Sentinel and Log Analytics. The lowest level you can set permissions is in the Log Analytics workspace via IAM/Custom roles for tables and then hope everything works right in the higher layers.

Logging Queries

If you choose to migrate without considering any permissions during the migration, it is probably going to be a good idea to log and monitor any queries that are being sent to the Log Analytics workspace (directly or via Sentinel). If there are very sensitive tables contained in the workspace and folks are running queries that should not be doing so, you should be alerted to that (from another workspace/Sentinel?)

So, using Sentinel to monitor Sentinel becomes a thing. Isn’t recursion great?

Summary

Net net…Azure Sentinel is missing some pretty substantial permission based features that you enjoy in other SIEMs. It is up to you to determine if the functionality you are gaining, out weighs the short term drawbacks of losing out on these important security features.

Splunk to Sentinel Blog Series

  1. Part I – SPL to KQL, Exporting Objects
  2. Part II – Alerts and Alert Actions
  3. Part III – Lookups, Source Types and Indexes
  4. Part IV – Searches
  5. Part V – Dashboards and Reports
  6. Part VI – Users and Permissions
  7. Part VII – Apps

References:

  1. My Twitter
  2. My LinkedIn
  3. My Email

Splunk to Sentinel Migration – Part V – Reports and Dashboards

Now that we have the basics in place, its time to approach some of the harder topics that one would run into during a migration. The first difficult thing falls into the category of reports and dashboards.

This is where things become very much like migrating a non-SharePoint CMS to Sharepoint (which I have done many to many instances of with a high performance tool I created called PowerStream).

Splunk Dashboards are very much like web part pages in SharePoint and ASP.NET. They are made into various sections and placed into an XML/HTML file. On the other side of the equation, you have Workbooks in Azure Sentinel / Log Analytics / Azure Monitor. They are also similar to web part pages with sections.

Sections tend to have variables and queries tied to them and then some kind of context that tells the section how to render. This exists on both sides so a mapping has to be done between source and target.

Splunk Sections

In Splunk, you have the following sections and types:

When searching for these sections, you will look at each of the xml files that are exported for each dashboard. Inside these xml files you will find a s:key element with the name value of “eai:data”. This contains the actual form that will be displayed as part of the dashboard to users. Inside this form are rows and panels:

Inside these panels will be the sections that are of most importance. Things like HTML text and the search queries will be lurking:

As you can see above, the search query is embedded along with the filters and the options that need to be passed to it. These items need to be extracted and then converted to their Azure equivalents.

Sentinel Sections

In order to do the mapping to Azure you will need to understand how to create the workbooks and then upload them properly so they display in Azure Sentinel. In Azure workbooks, they are defined by JSON and have up to 11 different types of “items”. Here are some examples:

  1. Type 1: KqlItem- HTML\Text
  2. Type 3: KqlItem – Query
  3. Type 9: KqlParameterItem – Parameter
  4. Type 10: MetricsItem – Metric from Log Analytics
  5. Type 11: LinkItem – A Url/Link

Again, as part of the migration, you must take the extracted items from the Splunk dashboard and convert to the Workbook version. Once you have this figured out, you now need to upload the workbook.

Uploading Workbooks

Once you have a converted workbook, its time to upload it to Azure Sentinel. Because Sentinel simply builds off a Log Analytics workspace, most things (but definitely not all) are stored in that workspace. To upload, you will make a post to the following rest endpoint:

$url = "/subscriptions/$subscriptionId/resourcegroups/$resourceGroupName/providers/microsoft.operationalinsights/workspaces/$workspaceName"

The post body has some very specific items that must be set in order for the workbook to show up in Sentinel. As it took me some time to determine these parameters, I’ll leave it to use your favorite tool Fiddler to get to the same point 🙂

In the next post, we will explore how permissions work (well they kinda work, as I mentioned in earlier posts its the weakest part of Sentinel at the moment).

Splunk to Sentinel Blog Series

  1. Part I – SPL to KQL, Exporting Objects
  2. Part II – Alerts and Alert Actions
  3. Part III – Lookups, Source Types and Indexes
  4. Part IV – Searches
  5. Part V – Dashboards and Reports
  6. Part VI – Users and Permissions
  7. Part VII – Apps

References:

  1. My Twitter
  2. My LinkedIn
  3. My Email